Cross Device Identity Management (CDIM) FAQ

How do I build a CDIM segment?
Please refer to the How to Build Segments with CDIM guide for a detailed walkthrough.

What is the purpose of the Predictive CDIM report?
The Predictive CDIM report describes all of the devices associated with people already in a given segment. It allows you to identify and map consumers and behavior patterns consistently across all devices, screens, and platforms.

Note: Predictive CDIM requires enablement. Please reach out to your account owner for more information.

What are the key features of the Predictive CDIM report:

  • Connects known and unknown devices (declared and predictive)
  • Create a CDIM segment directly from the report
  • Aggregate audiences and their data across devices
  • A choice of similarity levels allows you to consider the trade off between accuracy and scale

What are the key benefits of the Predictive CDIM report?

  • Improves reach, relevance, and inventory monetization
  • Increases your opportunity to sequence ads, at optimal frequency, for consistent messaging and experience across channels, throughout the journey
  • Delivers accurate analytics for segment profiles and campaign conversions
When will the CDIM graph be available for a newly created base segment?
The CDIM graph will not be available until the base segment has gone through the weekend processing queue. For example, if you create a new standard segment on Thursday, the CDIM graph should be available on the following Monday. Once the CDIM graph is available, you can proceed with building your CDIM segment.
How long does it take for CDIM to work?

CDIM is used in many different places within the Audience Studio, each with different timing considerations.

  • Probabilistic CDIM - Once this is enabled for your account, it will start working immediately.
  • Deterministic CDIM - Immediately after you implement this component correctly, segment populations (and other parts of the platform) will start to use these relationships in conjunction with probabilistic CDIM.
  • Grow My Population (Extension) - Growing a population with CDIM is a complex model that is run only once a week. As a result, you should not expect this to be available until the Monday after you have extended your segment.

Is the Audience Studio matching algorithm client-specific?

The matching model is global, but it is applied specifically to the devices of each customer.

Is my user login data shared with other clients?
Deterministic linkages (user login data) are never shared with other clients. These are kept explicitly for use by the customer to whom they belong. However, these linkages are used to train the global probabilistic model that is used by all customers.
How does the probabilistic matching algorithm work?

The core of the model is designed to uncover the devices that stay together in various places over long periods of time. To do this effectively there are three important considerations - scale, training, and validation.

  • Scale - Because the success of the model is predicated on seeing lots of devices and how they move over time, it is essential to have massive reach into the device world. With one of the largest device footprints on the planet, Audience Studio has an advantageous position from which to deliver accurate results.
  • Training - Audience Studio uses deterministic data coming from authenticated events (logins, purchases, etc) to provide a truth set for training the algorithm.
  • Validation - From the deterministic data set, Audience Studio reserves some data to continuously validate the efficacy of the model.

Between these three items Audience Studio is able to continuously improve the accuracy of the predictions and deliver a better product.

To better understand the view of devices over time, consider a user's work and home movement. During the work day, all of the user's devices are likely to be tied to the same IP from work. However, colleagues are also tied to the same IP and in that single snapshot of time, it may be assumed the user and their colleagues are the same person.

Looking at that same IP address at night, there is likely no activity, as everyone has left the office. When looking at the user's home IP at night, all of the devices that belong to that user and their family are tied to the same IP. That single snapshot might imply that the user and their family are one "person".

What are the confidence intervals associated with predictive CDIM (high, medium, low)?
These intervals are benchmarks designed to bucket the trade-offs between accuracy and scale. 

Can I divide the Devices by People for a segment to get the average number of devices per person?
No - not every single device is mapped to a person (probabilistically or deterministically). As a result, the unmapped devices which would skew this calculation, need to be excluded.

Does CDIM work in my device universe or outside of it?
The predicted set of devices come from the global Audience Studio universe.

How are shared devices handled in relation to the CDIM algorithm?
Audience Studio applies logic to ensure that we credit the most rational ONE deterministic ID to each KUID. We take into account multiple factors when making this determination, but frequency and recency are highly weighted aspects.

For example, if you and your significant other have both logged into a major news site on the same device (KUID1), but you have done so 10x more times and you were the most recently logged event in association with that device, the credit would be applied to you, and not your significant other.

Is CRM data included in the CDIM algorithm?
No, CRM data is not included.

What reports in the Audience Studio UI do not account for CDIM?
Audience Studio does not use CDIM in either the funnels or the reach and overlap reports

Is household identity part of CDIM?
The CDIM solution in Audience Studio does not currently have a household component at this time.

Does Audience Studio use 3rd party data or software to enhance its CDIM?
No, Audience Studio does not use 3rd party data to deliver CDIM.

Can I provide external matches to help improve device matching for my business?
Yes, If a match table is provided, it can be incorporated and the matches will be only available to that account.

Can the device graph be exported?
No, the device graph itself is not exportable.

How will the Salesforce integration impact the CDIM solution?
There will be no impact in the immediate near term. However, we look forward to the future where the worlds largest offline CRM system and the Audience Studio are fully integrated and can deliver unprecedented scale in person-based marketing.

Is global data or US data used for the CDIM algorithm?
Currently, all data is used for the CDIM algorithm. Region-specific versions are not available. Audience Studio is currently and will continue to be compliant with all global and regional privacy policies.

What percent of all devices are mapped on the CDIM graph?
Audience Studio can map ALL devices. However, this is a question of accuracy and scale. The higher the accuracy, the fewer matches expected.

How are Safari users being captured?
Audience Studio is not able to capture Safari in CDIM, as we do not have the ability to drop 3rd party cookies. We are working hard to identify a solution that will address the limitations of Safari in CDIM.

Does CDIM include app or only web/cookies?
CDIM includes app and web. Audience Studio supports IDFA, AAID, and Cookies. We will soon be adding additional device categories to CDIM.

If the majority of app users do not log in, how meaningful is the data collected for probabilistic matching?

The quality of the probabilistic matching algorithm is improved by deterministic data coming from all clients. If a customer does not have deterministic data, it does not mean that CDIM is not a valuable feature. It simply means the entire set of devices in the account must be probabilistically matched. Several factors will determine the validity of this approach for any given client. These factors are related to the level of uniqueness of the audience relative to the general device pool.

Is there a minimum threshold of segment size to apply CDIM for a segment?
No, there is no minimum threshold in segment size to apply CDIM for a segment.

How does GDPR impact CDIM scalability?
GDPR could potentially impact CDIM scalability. We use devices that are analytics consented only to build a CDIM predictive model. Then we use that CDIM predictive model to score the devices that are cross device consented only. As such, lower cross device consent has led to lower scalability with the CDIM predictive model.

Have more questions? Submit a request


Please sign in to leave a comment.